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AbstractAbstractAbstractAbstract    22 

Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to 23 

global public health. Enteric viruses may originate from human wastewater and can undergo rapid 24 

transport through aquatic environments with minimal decay. Surveillance and source apportionment of 25 

enteric viruses in environmental waters is therefore essential for accurate risk management. However, 26 

individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is 27 

unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater 28 

contamination, viral decay and transport in water. An ideal indicator for tracking wastewater 29 

contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater 30 

treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral 31 

pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically 32 

evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric 33 

viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and 34 

gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, 35 

including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest 36 

potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and 37 

high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are 38 

also widely detected in wastewater and in the environment, and may be used as molecular markers for 39 

human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring 40 

of viral contamination in freshwater and marine environments and that these should be implemented 41 

within monitoring programmes to provide a holistic assessment of microbiological water quality and 42 

wastewater-based epidemiology, improve current risk management strategies and protect global human 43 

health.  44 

 45 

Keywords: gastroenteric viruses; environmental sampling; viral indicators; sewage contamination; risk 46 

assessment 47 

 48 
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1.1.1.1.    IntroductionIntroductionIntroductionIntroduction    50 

1.1 Waterborne enteric viruses 51 

Waterborne diarrheal diseases account for approximately 4 billion cases annually, resulting in 2 million 52 

deaths, most of which occur in children under five (WHO, 2010). A significant proportion of these illnesses 53 

are caused by enteric viral infections (Ramani and Kang, 2009). Enteric viruses are transmitted via the 54 

faecal-oral route and the most important route of transmission is direct contact with infected individuals 55 

(Katayama and Vinje, 2017). Nonetheless, most enteric viruses are persistent in environments affected by 56 

domestic wastewater discharge and are often associated with waterborne outbreaks (Gibson, 2014; 57 

Kauppinen et al., 2018; Sekwadi et al., 2018).  Wastewater often receives treatment prior to release into 58 

the environment, although traditional wastewater treatment methods can be relatively ineffective at 59 

removing enteric viruses (Kitajima et al., 2014; Qiu et al., 2015; Sidhu et al., 2017b). In developing 60 

countries, many areas lack adequate sanitary infrastructure and wastewater treatment facilities and hence 61 

faecal matter contaminates the environment and drinking water sources (Bain et al., 2014). Furthermore, 62 

large volumes of untreated wastewater may also be discharged via combined sewer overflows (CSOs) 63 

during heavy rainfall events and via dry water overflows for example during snowmelt, tidal infiltration or 64 

system failures and blockages (Ahmed et al., 2020). These events enable the direct entry of enteric 65 

pathogens into the environment (Fong et al., 2010), where people in direct or indirect contact with 66 

contaminated waters may be at risk of acquiring viral infections (Sinclair et al., 2009). Enteric viruses are 67 

readily transported in environmental waters and can adsorb to solid matter present in the water column or 68 

accumulate in sediment (Hassard et al., 2016). Subsequently, they may also be taken up by filter feeding 69 

aquatic animals such as bivalve shellfish that are harvested for human consumption (Landry et al., 1983; 70 

Lowther et al., 2012). Furthermore, wastewater is often used for irrigation in countries experiencing 71 

freshwater shortage, and hence, enteric viruses may directly contaminate fruit and salad vegetables and 72 

result in foodborne outbreaks (Bosch et al., 2016; Chatziprodromidou et al., 2018; Jasim et al., 2016). 73 

Enteric viruses usually cause gastroenteritis lasting for 2-5 days. In some cases, the infection results in 74 

respiratory, neural or epidermal symptoms, or remains asymptomatic (Table 1). The viruses most often 75 
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associated with gastroenteritis are members of the Picornaviridae, Caliciviridae, Reoviridae and 76 

Adenoviridae families (Table 1). For example, noroviruses (family Caliciviridae) are responsible for a high 77 

proportion of gastroenteritis infections globally, with 685 million cases and approximately 200,000 deaths 78 

(CDC, 2016; Katayama and Vinje, 2017), resulting in a total direct cost of US$4.2 billion to the healthcare 79 

system and US$60.3 billion in associated societal costs per year (Bartsch et al., 2016). Rotaviruses (family 80 

Reoviridae) and group F mastadenoviruses (AdVs) (family Adenoviridae) are the main causative agents of 81 

gastroenteritis amongst infants and young children (Desselberger and Gray, 2009; Jiang, 2006). 82 

Noroviruses, hepatitis A virus (family Picornaviridae) and AdVs are the most common viral pathogens 83 

associated with waterborne and water-associated foodborne outbreaks and infection may result in serious 84 

illness, e.g. acute hepatitis (Bellou et al., 2013; Harris et al., 2006; Jiang, 2006; Parshionikar et al., 2003; 85 

Sinclair et al., 2009).  86 

Rotaviruses, enteroviruses, sapoviruses, astroviruses, Aichi virus (AiV) and hepatitis E virus are also often 87 

shown to be associated with wastewater contamination. For example, in Maharashtra state, India in 2017, 88 

a rotavirus B outbreak with a 22.8% attack rate (i.e. new cases/number of people) was sourced from 89 

contaminated wells used for drinking water (Joshi et al., 2019). In addition, several viral gastroenteritis 90 

outbreaks linked to sewage-contaminated drinking water containing AdV, noro- sapo-, astro-, rota-, and 91 

enteroviruses have been reported (Kauppinen et al., 2019; Maunula et al., 2009; Rasanen et al., 2010). The 92 

largest viral waterborne outbreak affecting approximately 80,000 people in Kanpur, India was associated 93 

with hepatitis E virus (Naik et al., 1992). The surveillance of enteric viral illnesses can be challenging, as 94 

many of the enteric viral outbreaks are unreported as  the symptoms are often subclinical (Cortez et al., 95 

2017; Koff, 1992; Li et al., 2017; Matson et al., 1993; Sakai et al., 2001; Zaoutis and Klein, 1998).  96 

Over the last decade, both newly discovered viruses and known viruses that had previously not been 97 

associated with wastewater have been found in environmental waters (Table 1). Human polyomaviruses 98 

(PyVs) and papillomaviruses were first discovered in the 1970s and 1950s, respectively, however, they have 99 

only recently been found in the faeces and urine of infected individuals (Knowles, 2006; Rachmadi et al., 100 

2016). Some PyVs, including BKPyV, WUPyV, KIPyV, MCPyV and JCPyV have been detected at high 101 
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concentrations (up to 108 genome copies (gc)/l) in wastewater, river and seawater and sediment, in 102 

swimming pools and in tap water (Di Bonito et al., 2017; Dias et al., 2018; Farkas et al., 2018a; Fratini et al., 103 

2014; Hamza and Hamza, 2018; Rachmadi et al., 2016). As these viruses are commonly asymptomatic in 104 

healthy individuals, the route of transmission is not yet clear, however, waterborne infections are likely 105 

(Fratini et al., 2014).  106 

Bocaviruses (family Parvoviridae), causing respiratory tract infections and gastroenteritis, were first 107 

described in 2005 (Allander et al., 2005). They have since been found in untreated and treated wastewater 108 

at concentrations of 103-105 genome copies (gc)/l (Hamza et al., 2017; Iaconelli et al., 2016; Myrmel et al., 109 

2015), however, their prevalence in environmental water has not been explored. The torque teno virus 110 

(family Anelloviridae), which causes gastroenteritis has also been found in wastewater and in polluted river 111 

waters. Similar to bocaviruses, torque teno virus concentrations are considerably lower (up to 106 gc/l) than 112 

the concentrations of other, more common enteric viruses (104-109 gc/l) (Hamza et al., 2011; Haramoto et 113 

al., 2008). Human picobirnaviruses (family Picobirnaviridae) have also been detected in wastewater 114 

(concentration range: 103 – 106 gc/l) and in contaminated rivers with variable prevalence (Adriaenssens et 115 

al., 2018; Hamza et al., 2011; Symonds et al., 2009). In addition, recent comparative genomics analysis has 116 

suggested that picobirnaviruses are bacteriophages, likely associated with mammalian gut bacteria 117 

(Krishnamurthy and Wang, 2018). Genomes or partial genomes of circoviruses (family Circoviridae) and 118 

cardioviruses (family Picornaviridae) along with enveloped viruses (coronaviruses, influenza virus) have also 119 

been found in wastewater (Bibby and Peccia, 2013; Blinkova et al., 2009; Ng et al., 2012). Enveloped viruses 120 

degrade in water rapidly (Gundy et al., 2009; Lebarbenchon et al., 2011), hence, human infections from 121 

waterborne corona- and influenza viruses (e.g. SARS-CoV-2) are unlikely.  122 

1.2 Viral indicators for wastewater contamination 123 

Over 100 types of human enteric viruses are known to be common water pollutants (Melnick, 1984) and 124 

with novel and emerging strains, the number is increasing. Due to the diversity of human pathogenic 125 

viruses in the environment, surrogates and indicators are often used to investigate the fate and transport 126 

of pathogenic strains in the environment. An indicator may be suitable for a broad assessment of 127 
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wastewater and drinking water treatment efficiency and for studying pathogen abundance, persistence, 128 

adsorption and transport in the aquatic environment. Furthermore, quantitative monitoring of viral 129 

indicators can provide useful data for microbial source tracking, transport modelling and risk assessment. 130 

Traditionally, faecal indicator bacteria (FIB; including coliform bacteria, Escherichia coli, Enterococcus and 131 

Streptococcus spp.) have been used to determine levels of faecal contamination in water. However, it has 132 

been shown that bacteria are significantly less resistant to wastewater treatment and less persistent in the 133 

environment than enteric viruses (Fong et al., 2005; Kim et al., 2009; Lin and Ganesh, 2013; Prez et al., 134 

2015; Sidhu et al., 2017a; Staley et al., 2012). Consequently, FIB are poor indicators of viral infection risk 135 

and this suggests that current water quality monitoring programmes based solely on FIB are inadequate. 136 

Ideally, a good viral indicator for wastewater-contamination assessment should have similar inactivation 137 

and retention to the target pathogens and should be present in wastewater and in wastewater-138 

contaminated environments throughout the year. That would enable continuous monitoring and inform on 139 

the level of contamination and the probability of pathogen presence. Furthermore, an indicator with 140 

constant levels in wastewater may serve as a proxy for population size when wastewater-based 141 

epidemiology is used to estimate the proportion of infected people during a viral outbreak or pandemic, 142 

e.g. COVID-19 (Xagoraraki and O’Brien, 2020). Additionally, it should be source-specific to distinguish 143 

between animal- and human-derived pollution (Scott et al., 2002). Some enteric viruses associated with 144 

wastewater (as listed in Table 1) have potential to be used as indicators, however, not all of those viruses 145 

fulfil these requirements. Influenza viruses, coronaviruses, circoviruses and papillomaviruses have been 146 

detected at high concentrations in wastewater but not in polluted environments, which may be due to their 147 

rapid decay in water. Furthermore, some enteric viruses (e.g. astrovirus, rotavirus, torque teno virus and 148 

hepatitis E virus; Table 1) may be zoonotic, hence their presence in the environment may be a result of e.g. 149 

agricultural activities instead of human waste. Hepatitis A and E viruses are abundant in less economically 150 

developed countries, however, they are only responsible for sporadic outbreaks in more developed regions 151 

(Bosch et al., 2016). Further, enteroviruses, noroviruses and sapoviruses show clear seasonality with peaks 152 

either in the summer (enteroviruses) or during the winter (noroviruses and sapoviruses) in temperate 153 

climates. Hence, these viruses are not found in wastewater and in the contaminated environment at all 154 
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times of the year (Farkas et al., 2018a; Nino Khetsuriani et al., 2006; Pons-salort et al., 2018; Prevost et al., 155 

2015). Human AdVs, PyVs and AiVs are frequently found in wastewater and in polluted environments 156 

without any distinct seasonality, hence their utility as effective faecal indicators have been suggested 157 

(Kitajima and Gerba, 2015; Rachmadi et al., 2016; Rames et al., 2016).  158 

Bacteriophages infecting bacteria associated with the human gut are also common in wastewater. Somatic 159 

coliphages (phages infecting E. coli) and F-specific RNA bacteriophages (FRNAP; phages infecting bacteria 160 

through the F-pili) are commonly used to assess wastewater contamination. However, as not all strains 161 

exclusively associate with human bacteria, they should be used with caution. Bacteriophages infecting 162 

Bacteroides spp. also have the potential to indicate wastewater contamination. Amongst these phages are 163 

a newly discovered group of viruses called crass-like phages. The type genome, crAssphage sensu stricto 164 

(metagenome-assembled genome), belongs to the normal gut virome, having co-evolved with humans 165 

(Dutilh et al., 2014; Edwards et al., 2019). Since the discovery of the first crAssphage genome, more crass-166 

like sequences have been found and one phage has been isolated. However, their genomic diversity is large 167 

and the crAssphage sensu stricto and the isolated crass-like phage do not belong to the same genus 168 

(Shkoporov et al., 2018). As the taxonomy of crass-like phages remains to be established, we refer to 169 

crAssphage as a group of viruses with nucleotide similarity to the crAssphage sensu stricto described by 170 

Dutilh et al. (2014) and quantified by Stachler et al. (2017).   171 

Interestingly, a plant virus, the pepper mild mottle virus (PMMoV; family Virgaviridae), has also been 172 

shown to be associated with human wastewater and found in polluted surface and groundwater and in 173 

drinking water (Symonds et al., 2018). The primary source of PMMoV in human excreta is through 174 

consumption of peppers (Capsicum spp.) and food products containing peppers that are contaminated with 175 

the virus (Zhang et al., 2005). PMMoV is suggested to be a useful indicator for wastewater contamination 176 

(Kitajima et al., 2018b; Symonds et al., 2018), however, its shape and size (17 x 300 nm rod-shaped capsid) 177 

differs from other pathogenic viruses with icosahedral capsids and hence its fate and behaviour in the 178 

environment may be different.  179 
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In this review, we evaluated the practicality of a set of human-waste associated viruses as indicators for 180 

wastewater contamination of the aquatic environment (Table 2). We have extracted data from 127 181 

individual studies to assess the usefulness of viral indicators by addressing specific aspects. The data 182 

collected on viral concentrations in wastewater and environmental receiving waters are presented in 183 

Tables S1-6, while the corresponding wastewater treatment log removal rates for each virus are presented 184 

in Table S7. Together, we used this information to assess the ranges of virus abundance and distribution in 185 

global aquatic systems. We included human wastewater-associated viruses, which are often present in 186 

wastewater at high concentration without seasonality. We considered enteric viruses, (human AdVs, PyVs 187 

and AiVs), PMMoV and human gut bacteria-associated bacteriophages, including FRNAP infecting E. coli 188 

(specifically genogroups II and III), and bacteriophages of human gut commensal Bacteroides spp. (including 189 

crAssphage). For evaluation, we used the following criteria: 190 

1. Ease of detection and quantification 191 

2. Human waste association 192 

3. Presence in wastewater at high concentrations 193 

4. Resistance to wastewater treatment 194 

5. Persistence in the aquatic environment 195 

6. Global distribution and temporal stability 196 

2.2.2.2.    Data Data Data Data ccccollectionollectionollectionollection    197 

We collected viral concentration data published in peer-reviewed journal articles since 2005 (Tables S1-7; 198 

Figure 1). Articles were identified via Google Scholar in September 2018 – October 2019 using the following 199 

keywords: ‘wastewater adenovirus’, ‘wastewater polyomavirus’, ‘wastewater Aichi virus’, ‘crAssphage’, 200 

‘wastewater pepper mild mottle virus’, ‘wastewater AND (“F-specific RNA” OR F+ OR “FRNA” OR “male 201 

specific”) AND *phage AND genogroup’ and ‘wastewater Bacteroides bacteriophage’’. The Google Scholar 202 

search included these terms or part of them in the whole text, hence enabling the identification of studies 203 

on the aquatic environment where wastewater contamination was assessed using the target viruses. The 204 

studies were screened based on the title and abstract and initially 243 papers were selected.  205 
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The assessment of enteric viruses, PMMoV and crAssphage concentrations usually involved the 206 

concentration of large volumes of water (1-10 l), and the efficiency of those procedures may therefore 207 

affect the outcomes. Hence, studies where viral concentrations were not determined or sample process 208 

recovery efficiency and/or quantitative PCR (qPCR) performance was not addressed were excluded from 209 

the study. Studies where sample process recovery was <10% were also excluded. After the quality screen, 210 

127 peer-reviewed research papers were included in the review (Table 2). Viral concentration data were 211 

classified by water type (untreated and treated wastewater, surface freshwater, groundwater and 212 

seawater) and the detection rates (i.e. positive samples / all samples x 100%), mean/median concentrations 213 

and/or minimum-maximum concentrations were extracted (Figure 2, Table S1-S6). In most studies only the 214 

mean/median and/or minimum-maximum concentrations were reported, hence further meta-analysis was 215 

not performed. Virus removal rates reported during wastewater treatment processes were also retrieved 216 

(Figure 3; Table S7). Additionally, the primers and probes used for the qPCR detection and quantification of 217 

viruses have also been summarised (Table S8). 218 

3.3.3.3.    Evaluation of viral indicators Evaluation of viral indicators Evaluation of viral indicators Evaluation of viral indicators     219 

3.1 Criterion 1: Ease of detection and quantification 220 

For the accurate detection of low viral titres, environmental samples are often concentrated prior to virus 221 

detection. Ultracentrifugation, ultrafiltration, adsorption/elution and flocculation are often used for the 222 

concentration of water samples, and their effectiveness and limitations have been reviewed previously 223 

(Barardi et al., 2012; Bofill-Mas and Rusiñol, 2020; Cashdollar and Wymer, 2013; Haramoto et al., 2018; 224 

Ikner et al., 2012). The efficiency of viral recovery depends on the type of concentration method used, the 225 

sample type and the virus type. Hence, viruses that can be easily and reproducibly recovered using simple 226 

concentration methods should be used as indicator viruses.  227 

Many approaches are available for the detection and quantification of viruses in environmental samples, 228 

including PCR and isothermal amplification of target genes, microfluidics, metagenomics, biosensors, 229 

microarrays and culturing-based techniques, as reviewed recently (Bonadonna et al., 2019; Farkas et al., 230 
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2020; Hamza and Bibby, 2019). Many of the emerging approaches show great potential to detect low 231 

concentrations of viruses in difficult matrices (Dhar and Lee, 2018; Farkas et al., 2020; Gyawali et al., 232 

2019b), however, to date they have not been implemented in the monitoring of viral contamination in the 233 

aquatic environment.  234 

In most studies, enteric viruses and proposed indicators were detected and quantified using real-time 235 

quantitative PCR (qPCR)-based approaches (Girones et al., 2010; Haramoto et al., 2018), which are rapid, 236 

easy, and cheap methods enabling strain-level detection. For instance, targeting different regions of the 237 

hexon capsid protein gene, all human AdVs or only enteric AdVs (AdV genogroup F) can be quantified 238 

(Table S1 and S8). qPCR can be easily multiplexed, enabling the simultaneous detection of 2-5 viral targets 239 

(Ahmed et al., 2019a; Farkas et al., 2017b; Jiang et al., 2014; Lee et al., 2016; Montazeri et al., 2015). Hence, 240 

it is widely used for the analysis of the level and spread of viral contamination in the aquatic environment 241 

(Staggemeier et al., 2017). More recently, digital PCR approaches, enabling absolute quantification without 242 

relying on standards, have also been used for the estimation of viral counts in wastewater and in 243 

environmental waters (Ishii et al., 2014; Jumat et al., 2017; Kishida et al., 2014; Sedji et al., 2018). These 244 

methods are also efficient, sensitive and often provide more accurate results that qPCR (Ishii et al., 2014; 245 

Kishida et al., 2014).  246 

The primers and probes repeatedly used in environmental studies for the detection and quantification of 247 

the potential indicator viruses with qPCR, reverse transcription (RT) qPCR, and dPCR, are listed in Table S8. 248 

In general, hydrolysis probe-based assays were predominantly used for viral detection. The specificity and 249 

sensitivity of the primer and probe sets had been assessed (empirically or in silico) using a set of target and 250 

non-target sequences and dilution series and shown to be adequate for the quantification of the target 251 

sequences (Barrios et al., 2018; Chehadeh and Nampoory, 2013; Dumonceaux et al., 2008; Goh et al., 2009; 252 

Gröndahl et al., 1999; Heim et al., 2003; Hernroth et al., 2002; Jothikumar et al., 2005; Kitajima et al., 2013; 253 

Ko et al., 2005; McQuaig et al., 2009; Ogorzaly and Gantzer, 2006; Pal et al., 2006; Pang et al., 2012; Prevost 254 

et al., 2015; Rusiñol et al., 2015; Stachler et al., 2017; van Maarseveen et al., 2010; Wolf et al., 2010, 2008; 255 

Xagoraraki et al., 2007). The high detection rates (Figure 2; Table 2) also suggest that the primer and probe 256 
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sets were suitable for the sensitive detection of the target viruses. Nonetheless, the specificity of the sets 257 

should be revised frequently in order to assure that novel strains are detected. 258 

PCR-based approaches however have some disadvantages. qPCR and especially RT-qPCR are often inhibited 259 

by organic substances, e.g. polyphenolic compounds, found in environmental samples (Ahmed et al., 2015; 260 

Farkas et al., 2017a; Girones et al., 2010; Matheson et al., 2014). Therefore, the use of DNA viruses as 261 

indicators (e.g. AdV, PyV, crAssphage) for wastewater-derived viral contamination may be more feasible 262 

than the use of RNA viruses (AiV, PMMoV, FRNAP) due to the more robust molecular detection of DNA 263 

targets (Farkas et al., 2017a; Hata et al., 2011). A major disadvantage of all PCR-based viral detection 264 

approaches is that they do not give any indication on the infectivity of the target, and hence often 265 

overestimate viral concentration and human health risks (Knight et al., 2013). Detecting segments of 266 

indicator genes is helpful for the evaluation of the magnitude of faecal contamination and source tracking, 267 

nonetheless, an ideal indicator should be capable of being cultured in vitro to enable the direct assessment 268 

of viral infectivity and decay in wastewater and in the aquatic environment. 269 

In the studies subject to this review, enteric viruses, crAssphage and PMMoV were predominantly detected 270 

and quantified using qPCR-based assays. However, in a few studies plaque assay or integrated cell culture-271 

qPCR (ICC-qPCR) were used for AdV detection (Table S1). The combination of cell culture and qPCR 272 

detection of viral replication enabled the detection of infectious viruses, which grew slowly and/or failed to 273 

produce cytopathic effects. Using this approach, the time required for infectivity analysis has been reduced 274 

from one week to two days, enabling rapid detection. Overall, qPCR/dPCR gave 1-5 log10 higher AdV 275 

concentrations than plaque assay and ICC-qPCR due to the presence of damaged virus particles and free 276 

viral DNA derived from degraded viruses in the environmental samples (Fongaro et al., 2015, 2013; Hamza 277 

et al., 2011; Hewitt et al., 2011; Rigotto et al., 2010; Rodríguez et al., 2013; Sassoubre et al., 2012; Sedji et 278 

al., 2018). The higher concentrations detected using ICC-qPCR compared to the traditional culturing assays 279 

suggest that using qPCR-based quantification of cultured viruses is more sensitive and hence more reliable 280 

in environmental settings (Fongaro et al., 2013; Sedji et al., 2018). PyVs and AiV are also culturable, 281 

however, the propagation process is time consuming (2-4 and 4-6 weeks, respectively) and often 282 
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inconclusive (Reuter et al., 2011; Seehafer et al., 1978), hence, these approaches have not been adapted to 283 

environmental studies. ICC-qPCR-based approaches may be suitable for assessing the infectivity of these 284 

viruses in the environment, however, to date no ICC-qPCR assays have been developed for these targets. 285 

The disadvantage of any culturing-based assay for enteric virus detection is the need for specific equipment 286 

(e.g. CO2 incubator), environment (BSL2 or BSL3) and staff for the maintenance of specific cell lines, which 287 

may not be available in routine monitoring laboratories.  288 

FRNAP are easy to culture and readily form plaques on a lawn of the host bacterium, which is usually the 289 

WG49 strain of Salmonella typhimurium or Escherichia coli HS(pFamp)R (USEPA, 2001). Higher volumes (up 290 

to 100 ml) of samples or concentrates are typically used for culture-based assays than for qPCR (a few 291 

microliters of nucleic acid extract) and so culturing can be more sensitive than direct qPCR. However, this 292 

method will produce plaques of a range of different strains that cannot be differentiated based on 293 

morphology. Therefore, to identify and quantify specific FRNAP genogroups, it is necessary to use 294 

genogroup-specific molecular detection methods. Such methods include RT-PCR analysis of plaques 295 

(Haramoto et al., 2015, 2012) and 1-day ICC-RTqPCR (Hartard et al., 2017), most-probable number assays 296 

(Hata et al., 2016) or in-situ plaque membrane hybridisation techniques (Flannery et al., 2013).  297 

Many Bacteroides-associated phages are also culturable using appropriate hosts, including Bacteroides 298 

strains GB-124, RYC2056, GA17 and ARABA-84, with double-layer agar method to quantify the number of 299 

plaque forming units (pfu). However, the assay is more challenging than the plaque assay for FRNAP as 300 

culturing Bacteroides spp. require anaerobic conditions, which may not be available in most laboratories. 301 

The recent isolation and in vitro maintenance of phage ΦCrAss001 infecting Bacteroides sp. indicates that 302 

plaque assays for this type of phage may be used in future environmental studies (Shkoporov et al., 2018). 303 

It is important to mention, though, that the crAssphage qPCR assay (Table S7) does not detect ΦCrAss001, 304 

as this phage is reported to belong to a different genus. 305 

In order to estimate viral decay where no in vitro infectivity assay is routinely available (e.g. hepatitis E 306 

virus, noro- and sapovirus), capsid integrity assays can be performed based on the assumption that an 307 
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intact virus particle is infectious. Capsid integrity can be assessed by the elimination of free viral nucleic 308 

acids using enzymatic treatment, such as DNase, RNase (Fongaro et al., 2013) and intercalating dye pre-309 

treatment (Prevost et al., 2016) or by capturing only the intact virus particles using immunomagnetic 310 

separation (IMS) (Haramoto et al., 2010). PCR-based enumeration following integrity assays show lower 311 

viral concentrations than direct qPCR, as the free viral nucleic acids are eliminated. However, as the intact 312 

virus particles may be damaged and hence non-infectious, these approaches may still overestimate viral 313 

counts (Fongaro et al., 2013; Walker et al., 2019). Nonetheless, integrity assays are valuable tools for 314 

estimating the number of viral particles in environmental samples and their use may improve viral risk 315 

assessment.  316 

3.2 Criterion 2: Human waste association 317 

Viruses, such as AdV, PyV and AiV strains (Table S1-S3), which specifically infect humans, are logical choices 318 

for indicators for human faecal contamination. Using these viruses and their corresponding animal 319 

associated strains, the source of contamination (e.g. human vs wildlife, livestock, etc.) can be assessed. For 320 

example, Staggemeier et al. (2015) used SYBR Green qPCR for the detection and quantification of AdVs in 321 

water and sediment samples by distinguishing human, bovine, porcine, canine and avian AdV genome 322 

sequences based on their melting temperature. Human and porcine AdVs, bovine PyV and porcine 323 

circovirus have also been used to assess the level of agriculture-related and human sewage-associated 324 

contamination in recreational, groundwater and drinking water (Fongaro et al., 2015; Garcia et al., 2012; 325 

Rusiñol et al., 2014). In the studies evaluated in this review, the AdV qPCR assays targeted all human AdV 326 

groups (A-G), the most common groups (A-F) or specific groups (C and F; Table S1). All of these groups are 327 

human-specific, demonstrating that waterborne infections of AdV F (predominantly type 41) are the most 328 

prevalent in wastewater and in the aquatic environment (Bofill-Mas et al., 2010; Chigor and Okoh, 2012; 329 

Fong et al., 2010; Fumian et al., 2013; Haramoto et al., 2007; Hewitt et al., 2011; Iaconelli et al., 2017; 330 

Ibrahim et al., 2018; Lun et al., 2019; Myrmel et al., 2015; Ogorzaly et al., 2015; Shih et al., 2017). The most 331 

common PyVs associated with wastewater are the JC and BK strains (Table S2), however, MC PyV is also 332 

found in wastewater and in wastewater-contaminated water (Di Bonito et al., 2014; Rusiñol et al., 2015). 333 
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All known human AiV (group A and B) have been found in human wastewater (Table S3). These viruses are 334 

highly human-specific and have not been found to associate with animal diseases. The JC and BK strain 335 

have not been found in animal waste (McQuaig et al., 2009), whereas to date, animal waste samples have 336 

not been tested for human AiV.  337 

PMMoV has been found at high concentrations in domestic wastewater (raw and treated) and in 338 

wastewater-polluted environments and shown to correlate well with other human markers (Bacteriodes 339 

HF183, PyV) (Kitajima et al., 2018b; Symonds et al., 2018, 2016) implying it associates with human waste. 340 

Nonetheless, the primary source of the virus are bell and chilli peppers, with the suggestion that it should 341 

not be used as a faecal indicator nearby to commercial pepper plant production areas. qPCR assays 342 

targeting PMMoV show high sensitivity, however, the viruses were also detected in avian, bovine and dog 343 

faeces at low concentrations (Gyawali et al., 2019a; Hamza et al., 2011; Rosario et al., 2009) suggesting that 344 

animals may also access pepper as a food source. Furthermore, it has been suggested that PMMoV is more 345 

abundant in faeces and in wastewater where more pepper products are consumed (Symonds et al., 2018), 346 

therefore the prevalence of PMMoV should be further investigated.  347 

Coliphages are commonly used as indicators for faecal viral contamination in water (McMinn et al., 2017). 348 

FRNAP genogroups II and III (FRNAP-II and FRNAP-III) have been shown to be associated with human 349 

sources, while genogroups I and IV (FRNAP-I and FRNAP-IV) are generally associated with non-human 350 

sources (Lee et al., 2011; Stewart-Pullaro et al., 2006). For this reason, several studies have used methods 351 

(described in Section 3.1) to distinguish between FRNAP genogroups to determine faecal sources. However, 352 

while there does appear to be a general association between genogroups and faecal sources, the bacterial 353 

host (E. coli expressing F-pili) is not source-specific and there is often overlap between source types for 354 

each genogroup (Cole et al., 2003; Harwood et al., 2013). 355 

Bacteriophages infecting Bacteroides, common human gut bacteria, have also shown potential as indicators 356 

for faecal contamination in the environment. The most commonly used strains, which are phages that 357 

infect Bacteroides BG-124 (BacBG124P), RYC-2056 (BacRYC2056P), GA-17 (BacGA17P) and ARABA-84 358 

(BacARABA84P), were shown to be human specific. However, one study detected BacRYC2056P in 359 
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wastewater samples derived from abattoirs, suggesting animal association (Wicki et al., 2015). qPCR based 360 

assays targeting crAssphage have shown good human specificity. While some cross-reactivity has been 361 

shown with dog, gull, poultry, pig and cattle faeces (Ahmed et al., 2018a; García-Aljaro et al., 2017; Stachler 362 

et al., 2017), the levels of crAssphage found in these non-human sources were several orders of magnitude 363 

lower than that of human sources. The highest crAssphage concentrations in animal sources were found by 364 

García-Aljaro et al. (2017) which may be attributed to pooled samples and/or the use of a different qPCR 365 

assay. García-Aljaro et al. (2017) also found that by normalising crAssphage levels against a general faecal 366 

indicator (E. coli), it was still possible to distinguish between human and non-human sources. Nevertheless, 367 

the cross-reactions of the qPCR with animal excreta should be further investigated to assess human 368 

specificity.  369 

3.3 Criterion 3: Presence in wastewater at high concentrations 370 

AdVs, PyV, AiV, human gut-associated bacteriophages and PMMoV are all frequently found in raw sewage 371 

and untreated wastewater at high concentrations (Figure 2; Table S1-6). The highest concentrations among 372 

the potential indicators were noted for crAssphage with concentrations of 1010 – 1012 gc/l in raw sewage 373 

detected in samples taken in Japan. CrAssphage concentrations were lower in wastewater samples taken in 374 

the US (Florida; 109 – 1010 gc/l) (Ahmed et al., 2018a) and in the UK (Wales; 105 – 108 gc/l) (Farkas et al., 375 

2019). CrAssphage is not currently well characterised and while the current primer and probe set do not 376 

align to any recently discovered relatives of crAssphage, it is possible that the qPCR-based detection assay 377 

is not specific to a single strain. 378 

AdVs were detected at 1011 gc/l concentration in wastewater influent, in Pisa, Italy in 2009-2010 (Carducci 379 

and Verani, 2013). In other studies using the same primer and probe set (Hernroth et al., 2002), the 380 

concentration of AdV was lower, between 103 and 109 gc/l  with the highest concentrations measured in 381 

other wastewater treatment plants in Italy (La Rosa et al., 2010), followed by peak concentrations of 108 382 

gc/l in Rome, Italy (Muscillo et al., 2008), Barcelona, Spain (Bofill-Mas et al., 2006), and in Minas Gerais and 383 

Rio de Janeiro, Brazil (Assis et al., 2017). Similar peak concentrations (108 gc/l) were observed when AdV 384 

groups A-G were targeted in Germany (Hamza et al., 2009a) and in Queensland, Australia (Sidhu et al., 385 
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2017b). The highest concentrations of AdVF (108-1010 gc/l) were observed in the US (Michigan) (Simmons et 386 

al., 2011) and in Giza, Egypt (Elmahdy et al., 2019) further verifying that this group of AdV is highly 387 

prevalent.  388 

PMMoV are also present in wastewater at high concentrations (up to 1010 gc/l). The highest PMMoV 389 

concentrations were reported in Florida and other states in the US (Rosario et al., 2009) followed by 390 

Germany (107 – 108 gc/l) (Hamza et al., 2011), New Zealand (107 gc/l) (Gyawali et al., 2019a), Vietnam and 391 

the US (Arizona; 106 – 107 gc/l) (Kitajima et al., 2014; Kuroda et al., 2015; Schmitz et al., 2016). Slightly 392 

lower FRNAP concentrations were noted in wastewater with the FRNAP-II appears to be more prevalent 393 

(107 – 109 gc/l) than FRNAP-III (104 – 107 gc/l) (Figure 2). However, more studies are needed to further 394 

investigate FRNAP-II/III concentrations in wastewater.  395 

Among PyVs, JCV had the highest concentrations (107-108 gc/l) in wastewater collected in Brazil and Chile 396 

(Fumian et al., 2010; Levican et al., 2019), however, it was less prevalent (103-106 gc/l) in the US (Arizona), 397 

Spain and in the UK (Wales) (Bofill-Mas et al., 2006; Farkas et al., 2018a; Kitajima et al., 2014; Rusiñol et al., 398 

2015; Schmitz et al., 2016). BKV and MCV are probably less abundant in wastewater than JCV with 399 

concentration ranges of 103-107 gc/l and 104-105 gc/l, however, limited surveillance has been done on these 400 

viruses in wastewater. AiV has only been sought in untreated wastewater in the USA (Arizona), Vietnam 401 

and Nepal (Haramoto and Kitajima, 2017; Kitajima et al., 2014; Kuroda et al., 2015; Schmitz et al., 2016) 402 

with concentrations between 104 and 106 gc/l, and shown to be less prevalent than the other indicators. 403 

The detection rate and concentration of AdV, PyV, AiV, FRNAP-II, crAssphage and PMMoV usually exceeded 404 

the concentration of noroviruses, sapovirus, enterovirus, astrovirus, rotavirus and hepatitis E virus (Farkas 405 

et al., 2019, 2018a, 2018b; Flannery et al., 2013; Fumian et al., 2013; Grøndahl-Rosado et al., 2014a; Hata 406 

et al., 2014; Kitajima et al., 2014, 2013; Masclaux et al., 2013; Prevost et al., 2015; Qiu et al., 2015; 407 

Simmons et al., 2011). However, in some cases norovirus and rotavirus showed higher concentrations than 408 

AdV and PyV (Kaas et al., 2018; Prado et al., 2019). 409 

The peak concentrations of cultured phages infecting Bacteroides in untreated wastewater was 106 pfu/l, 410 

however, this number cannot be directly compared with the concentration of other indicators due to the 411 
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different methods used for detection. The viral infectivity rate (i.e. gc: infective units) of virus may be as 412 

high as 1000:1 as determined for AdV (Hewitt et al., 2011), however, the actual infectivity rates for 413 

Bacteroides-associated phages is yet to be determined.   414 

All potential indicator viruses showed high (>90%) detection rates in untreated wastewater, except 415 

BacRYC2056P, which was found only in 82% and 38% of the analysed samples. AdVs and PyVs were 416 

frequently detected in wastewater from large and small wastewater treatment plants in the Americas, 417 

Europe, Asia and Australia (Figure 1; Table 2; Table S1, S2). Prevalence and concentration information for 418 

AiV was only reported for untreated wastewater samples from large wastewater treatment plants in the 419 

USA (Arizona) and Vietnam (Kitajima et al., 2018a, 2014, 2013; Kuroda et al., 2015; Schmitz et al., 2016). 420 

The PMMoV titre was assessed in wastewater samples derived from the USA, Germany, New Zealand and 421 

Vietnam (Hamza et al., 2011; Kitajima et al., 2014; Kuroda et al., 2015; Rosario et al., 2009; Schmitz et al., 422 

2016; Symonds et al., 2016). FRNAP-II prevalence in wastewater was only assessed in Japan and Ireland 423 

(Flannery et al., 2013; Haramoto et al., 2015, 2012; Lee et al., 2018), while FRNAP-III prevalence in 424 

wastewater was only assessed in Japan (Haramoto et al., 2015, 2012; Lee et al., 2018; Setiyawan et al., 425 

2014, 2013). In wastewater, the concentrations of phages associated with Bacteroides BG-124 were 426 

assessed in the US, Brazil, the UK (England) and Switzerland (E. Dias et al., 2018; Mcminn et al., 2014; Prado 427 

et al., 2018; Purnell et al., 2015; Stefanakis et al., 2019; Wicki et al., 2015), BacRYC2056P were investigated 428 

in Colombia, the UK, Spain, France, Cyprus, Sweden, Switzerland and Thailand (Costán-Longares et al., 429 

2008; Gomila et al., 2008; Payan et al., 2005; Venegas et al., 2015; Wangkahad et al., 2017; Wicki et al., 430 

2015, 2011), BacGA17P were found in Colombia and several European countries (Casanovas-Massana et al., 431 

2015; Costán-Longares et al., 2008; Gomila et al., 2008; Mayer et al., 2016; Payan et al., 2005; Venegas et 432 

al., 2015; Wicki et al., 2015) and BacARABA84P was identified in Switzerland (Wicki et al., 2015, 2011). 433 

CrAssphage concentrations were only determined in wastewater in the UK (Wales), Australia and the USA 434 

(Florida) (Ahmed et al., 2019a, 2018b; Farkas et al., 2018a). Due to the limited number of studies (Table 2), 435 

further testing is necessary to evaluate the prevalence and distribution of AiV, FRNAP-II, FRNAP-III, 436 

culturable phages infecting Bacteroides, crAssphage and PMMoV in untreated wastewater to assess their 437 

usefulness as indicators of wastewater pollution. Current data suggest that all assessed viral indicators, are 438 
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present in untreated wastewater at high concentration and hence they are potentially good indicators for 439 

wastewater contamination. 440 

3.4 Criterion 4: Resistance to wastewater treatment 441 

Enteric viruses have been shown to be extremely resistant to traditional wastewater treatment procedures 442 

(Figure 3; Table S7). As the removal efficiency varies amongst sites and the type of treatment process, 443 

comparative studies have been performed to study the resistance of enteric viruses and potential 444 

indicators during wastewater treatment.  445 

In this study, 24 studies comparing the virus removal efficiency of different wastewater treatment 446 

processes were evaluated (Figure 3). Fifteen of these studies exclusively used qPCR and RT-qPCR for the 447 

quantitative analysis of viral concentrations. As discussed in Section 3.1, these molecular techniques give 448 

no indication on the infectivity state of the viruses and hence may overestimate infective viral titres in 449 

untreated and treated wastewater and other environmental samples. This was demonstrated by Flannery 450 

et al. (2013a) whose data showed that while infectious FRNAP-II in UV-treated effluent was approximately 451 

2.3 log10 less than influent, only a 0.54 log10 reduction was found when using RT-qPCR alone. Most of this 452 

reduction in FRNAP-II infectivity occurred during the secondary treatment stage (1.69 log10 reduction), but 453 

the type of secondary treatment used in that study was not specified. In a study by Lee et al. (2018), an 454 

activated sludge process (a form of secondary treatment) resulted in 2.1 and 3.1 log10 reductions of 455 

infectious FRNAP-II and FRNAP-III, respectively. RT-qPCR analysis of the same samples showed log10 456 

reductions of 1.6 and 2.5 for FRNAP-II and FRNAP-III, respectively. The differences between infectious virus 457 

and genome removal were not significant. These studies therefore reached conflicting conclusions with the 458 

former showing that infectivity studies are vital and the latter showing that they are unnecessary. It is 459 

possible that the activated sludge process used by Lee et al. (2018) resulted in physical removal of viruses, 460 

while the process used by Flannery et al. (2013a) inactivated the viruses without physically removing them 461 

from the treated water. This highlights the importance of including the specific mechanisms used within a 462 

sewage treatment process when reporting such data, as it is not clear whether the secondary treatment 463 

processes in the two studies shared any mechanistic similarities. 464 
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Low removal rates have been reported for BacGB124P and BacGA17P during wastewater treatment. In 465 

most studies, the removal of these phages was ≤ 2 log10, regardless of the treatment method used (Dias et 466 

al., 2018; Mayer et al., 2016; Prado et al., 2018; Stefanakis et al., 2019), except for one study showing >5.6 467 

log10 removal of BacGB124P when disk filtration and chlorination was used as tertiary treatment (Prado et 468 

al., 2018). 469 

Data obtained from a wide range of qPCR-based viral quantification studies have shown limited removal of 470 

AdV, PyV, AiV, crAssphage and PMMoV during wastewater treatment. Activated sludge treatment and 471 

biofiltration, without further treatment resulted in 0.6-1.9 and 0.3-3.0 log10 removal of AdV and PyV, 472 

respectively (Figure 3; Table S7). Tertiary treatment processes resulted in an additional 1-3.5 log10 removal 473 

of AdV and PyV with membrane bioreactors coupled with additional chlorination, filtration and UV 474 

treatment being the most efficient method for viral removal (Qiu et al., 2018; Rusiñol et al., 2015; Simmons 475 

et al., 2011). Furthermore, AdVs have been shown to be more resistant to UV treatment than poliovirus, 476 

rotavirus, caliciviruses and hepatitis A virus (Hijnen et al., 2006). However, laboratory-scale studies suggest 477 

that AdVs are more susceptible to chlorine treatment than enteroviruses and caliciviruses (Cromeans et al., 478 

2010; Kahler et al., 2010; Thurston-Enriquez et al., 2005, 2003). Interestingly, significant differences were 479 

found for the removal of PyV strains. MCV was found to be the most resistant to treatment followed by JCV 480 

and BKV (Rusiñol et al., 2015).  481 

Fewer studies evaluated the removal of AiV, crAssphage and PMMoV, than the removal of AdVs, PyVs and 482 

phages. Overall, AiV showed 1-3 log10 reduction during secondary and 1-2 log reduction during tertiary 483 

wastewater treatment (Kitajima et al., 2018a, 2014, 2013; Schmitz et al., 2016). The removal of crAssphage 484 

was also in the range of 1.0-1.2 log10 during secondary wastewater treatment (Farkas et al., 2019), 485 

however, crAssphage removal has not been assessed during tertiary treatment yet. The current data 486 

suggests that PMMoV is stable during secondary treatment and chlorination, which results in <2 log 487 

reduction (Symonds et al., 2018). Larger PMMoV removal (>4 log) was only observed using 488 

electrocoagulation and Bardenpho (aerobic/anaerobic multi-reactor) technologies (Schmitz et al., 2016; 489 

Symonds et al., 2015). Further research is needed to evaluate the reduction of PMMoV during UV 490 
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treatment and other wastewater treatment procedures to evaluate its usefulness as an indicator. The 491 

major advantage of crAssphage and PMMoV is that their concentrations are usually high in wastewater, 492 

and hence the efficiency of their removal can be easily monitored. Nonetheless, their infectivity and decay 493 

have not been investigated due to the current lack of in vitro culturing-based methods. 494 

In studies where the removal of indicator viruses was compared with the removal of common pathogenic 495 

enteric viruses, indicator viruses showed similar or less removal than the pathogens (Carducci and Verani, 496 

2013; Farkas et al., 2018a; Kitajima et al., 2014; Prado et al., 2019; Rusiñol et al., 2015; Schmitz et al., 2016). 497 

Furthermore, a meta-analysis on the efficiency of secondary wastewater processes showed that activated 498 

sludge treatment resulted in 0.20 – 2.18 log10 reduction of rotavirus, and norovirus GI and GII, whereas 499 

biofiltration resulted in higher removal (1.52 – 4.30 log10) of norovirus GII and enteroviruses (Sano et al., 500 

2016). These removal rates are higher than the removal rates determined for the indicators reviewed here 501 

suggesting that the indicators can represent the removal of the most resistant viruses. However, three 502 

studies showed higher removal rates of BKV and JCV than norovirus, sapovirus, enterovirus and rotavirus 503 

(Farkas et al., 2018a; Fumian et al., 2013; Schmitz et al., 2016) suggesting that PyVs are less resistant than 504 

the pathogenic viruses and hence should be used with caution as an indicator. Current data shows that 505 

AdV, AiV, FRNAPII/III, crAssphage and PMMoV may be suitable for the assessment of wastewater 506 

treatment processes.  507 

As different viruses have varying reactions to wastewater treatment processes, the use of multiple 508 

indicators is recommended. For indicators other than bacteriophages reviewed here, the exclusive use of 509 

molecular detection and quantitation is a major limitation in understanding enteric virus removal. Hence, 510 

combinations of infectivity studies and molecular assays should be performed for viruses that can be 511 

cultured in vitro in order to assess viral survival during wastewater treatment. 512 

3.5 Criterion 5: Persistence in the aquatic environment 513 

Many of the studies that have been conducted to estimate viral persistence in natural waters have relied 514 

solely on qPCR-based quantification. While the reliance on qPCR data alone may lead to overestimations of 515 

infectious viral persistence, its use is nonetheless important especially when considering unculturable 516 
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enteric viruses. When measuring persistence of viral indicators in the aquatic environment, researchers 517 

should therefore be clear whether they are studying the persistence of a viral signal (for example nucleic 518 

acids detected by qPCR) or the infectivity of viruses (for example by culture).  519 

3.5.1 Indicators in surface freshwater 520 

Most research has focused on the occurrence and survival of indicator viruses in surface water. When 521 

quantified in surface freshwater bodies (lakes, rivers, streams, etc.) by qPCR, these viral indicators (e.g. AiV, 522 

AdV, JCV, PMMoV) are typically detected at up to 4 log10 higher concentrations than common enteric 523 

pathogenic viruses, e.g. norovirus, enterovirus and rotavirus (Hata et al., 2014; Jurzik et al., 2010; Rusiñol et 524 

al., 2015; Sassi et al., 2018). All indicator concentrations in river water correlated with the distance of 525 

sampling point from the source of contamination (wastewater treatment plant), with significantly higher 526 

concentrations occurring near the wastewater treatment plant than further downstream or upstream 527 

(Ebdon et al., 2007; Farkas et al., 2018a; Prevost et al., 2015; Rusiñol et al., 2015; Sassi et al., 2018; Sibanda 528 

and Okoh, 2012; Tandukar et al., 2018; Venegas et al., 2015; Wangkahad et al., 2017). Comparative studies 529 

showed that PMMoV occurred at higher concentration than AdV, AiV and PyV in surface water bodies in  530 

the USA (Arizona: 103-106 gc/l and Colorado: 104-105 gc/l), Germany (104-105 gc/l) and Vietnam (104-106 531 

gc/l)(Betancourt et al., 2014; Hamza et al., 2011; Kuroda et al., 2015; Sassi et al., 2018). The concentration 532 

of AdV and AiV (up to 104 gc/l)  were similar in river water collected in the USA (Colorado) and Japan 533 

(Betancourt et al., 2014; Hata et al., 2014; Sassi et al., 2018), whereas AdV was more prevalent than PyV in 534 

river water samples collected in Spain (76% vs 48% detection rates), the UK (Wales: 88% vs 65%), Japan 535 

(61% vs 11%) and Germany (79% vs 59%) (Albinana-Gimenez et al., 2009; Farkas et al., 2018a; Haramoto et 536 

al., 2010; Jurzik et al., 2010; Rusiñol et al., 2015). However, detection rates and concentrations of AdV and 537 

JCV were similar in highly polluted rivers close to the wastewater discharge points near Barcelona, Spain 538 

(100%, 103-104 gc/l)  and Rio de Janeiro, Brazil (100%, 102-105 gc/l) (Calgua et al., 2013). Taken together, our 539 

analysis shows that these indicator viruses are present in wastewater-polluted surface freshwater at high 540 

concentrations, which enables the accurate detection of the viruses and the comparative analysis of the 541 

rate of pollution (Crank et al., 2019; Zhang et al., 2019). 542 



23 
 

Culturable bacteriophages were also present in surface freshwater (Figure 2; Table 2). FRNAP-II were 543 

detected most frequently with concentrations up to 106 pfu/l followed by FRNAP-III and phages infecting 544 

Bacteroides (up to 105 pfu/l). FRNAP-II concentrations correlated with AdV concentrations in river water in 545 

France (Ogorzaly et al., 2009) and with AdV, norovirus, astrovirus and rotavirus in tropical freshwater 546 

samples in Singapore (Vergara et al., 2015). To date, no comparative studies have been done to compare 547 

enteric viruses and phages infecting Bacteroides spp. in surface freshwater. More research is essential on 548 

the prevalence of culturable human gut associated phages to assess their usefulness as indicators. 549 

3.5.2 Indicators in seawater 550 

As for freshwater environments, similar viral indicator trends have been observed in coastal waters where 551 

wastewater contamination is present. PMMoV was present at higher concentrations (102-105 gc/l) than PyV 552 

(102 gc/l) in coastal water at Miami, Florida (Symonds et al., 2016) and crAssphage was also present at 553 

higher concentrations (103-105 gc/l) than AdV (102-104 gc/l) and JCV (102-103 gc/l) in seawater collected at 554 

Conwy, Wales (Farkas et al., 2018a). AdV also had higher concentrations than PyV in seawater collected at 555 

Rio de Janeiro and Santa Caterina, Brazil (102-105 gc/l vs 101-103 gc/l), Florianopolis, Brazil (103-107 gc/l vs 556 

<10 gc/l), North Wales (102-104 gc/l vs 102-103 gc/l), and Catalonia, Spain (101-105 gc/l vs 100-102 gc/l) (Dias 557 

et al., 2018; Farkas et al., 2018b; Moresco et al., 2012; Rusiñol et al., 2015). CrAssphage, PMMoV and AdV 558 

and PyV are usually present up to 4 log10 higher concentrations in seawater than hepatitis A virus, norovirus 559 

and sapovirus (Dias et al., 2018; Farkas et al., 2018b; Fongaro et al., 2015; Moresco et al., 2012; Rusiñol et 560 

al., 2015; Symonds et al., 2018), however, one study found that the concentration of indicators and 561 

norovirus GII, rotavirus and sapovirus were similar, approx. 104 gc/l, in seawater collected at the Tahiti 562 

coast (Kaas et al., 2018). BacGB124P, BacRYC2056P and BacGA17P were also found in seawater at 563 

concentrations up to 104 pfu/l (Olalemi et al., 2016), however, these concentrations were not compared 564 

with enteric viruses. To date, FRNAP-II/III concentrations have not been measured in seawater samples. 565 

Based on the data reviewed here, PMMoV, crAssphage and AdV are suitable markers for wastewater 566 

contamination in seawater. 567 
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3.5.3 Indicators in groundwater  568 

Very few studies have evaluated the concentration of enteric viruses and viral indicators in groundwater. 569 

AdV, JCV, AiV, PMMoV, BacGB124P and BacARABA84P were detected in polluted groundwater in the USA 570 

(Arizona and Colorado) and Vietnam at very low concentrations (Albinana-Gimenez et al., 2009; Betancourt 571 

et al., 2014; Kuroda et al., 2015), hence the concentrations cannot be compared (Figure2; Table 2). Future 572 

studies may include the efficient concentration of high volumes (> 100 l) of groundwater to accurately 573 

determine viral concentrations and the associated risks.  574 

3.5.4 Persistence of indicators in water 575 

Understanding how long pathogenic and indicator viruses survive in the environment is crucial for accurate 576 

risk assessment and management. The mechanisms and factors influencing viral decay, such as virus type, 577 

temperature, microbial activity, pH, water type/conductivity, UV/sunlight radiation and the presence of 578 

solid/organic matter, have been assessed (Jin and Flury, 2002; Rzeżutka and Cook, 2004; Verbyla and 579 

Mihelcic, 2015). Many studies have shown that enteric viruses are more stable in the aquatic environment 580 

than traditional indicators, such as coliform bacteria and coliphages (El-Senousy et al., 2014; Fattal et al., 581 

1983; Keswick et al., 1982; Muscillo et al., 2008; Ogorzaly et al., 2010; Wait and Sobsey, 2001).  582 

FRNAP are easily cultured, and their persistence in surface waters has been studied in both surface 583 

freshwaters and seawater (Hata et al., 2016; Muniesa et al., 2009; Ravva and Sarreal, 2016; Yang and 584 

Griffiths, 2013). In general, FRNAP-I has been found to be the most persistent followed by FRNAP-II, FRNAP-585 

III and then FRNAP-IV. Using simulated sunlight, Flannery et al. (2013 b) studied the effect of solar radiation 586 

on the persistence of FRNAP-II and norovirus in seawater. The reductions in RT-qPCR detectable viruses 587 

was similar for norovirus and FRNAP-II under both summer and winter sunlight conditions. However, it took 588 

between 81% and 88% longer for a 90% reduction in RT-qPCR detectable FRNAP-II than for infectious 589 

FRNAP-II. This highlights again the need to consider infectivity when studying viral persistence in the 590 

environment. Brion et al. (2002) also studied the survival of different FRNAP genogroups in surface water. 591 

Environmental isolates of FRNAP-II had the highest variability in survival between isolates, while FRNAP-III 592 

had the lowest variability in survival between isolates. They concluded that FRNAP-III is suited to 593 
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determining whether there had been recent contamination to a water body by human faeces. In contrast, 594 

FRNAP-II was more suited to indicating contamination by distant or sporadic human source contamination. 595 

Due to its easy molecular detection and relatively straightforward in vitro culturing, the survival of AdV has 596 

also been well-studied. AdVs have shown 1-2 log10 reduction in infectivity in raw and sterilised groundwater 597 

and surface water over 120-180 days (Ogorzaly et al., 2010; Rigotto et al., 2011). In seawater, the decrease 598 

of viral infectivity was more rapid than in groundwater, with 1.2-1.4 log10 AdV reductions in 28 days 599 

(Enriquez et al., 1995) and sunlight significantly enhancing degradation at a rate of at least 2 log10 reduction 600 

per day (Liang et al., 2017). AdVs were more stable in groundwater and surface water than poliovirus, 601 

rotavirus and hepatitis A virus (El-Senousy et al., 2014; Enriquez et al., 1995). Ogorzaly et al. (2010) showed 602 

that AdV persists for longer in ground water than both MS2 (FRNAP-I) and GA phages (FRNAP-II). This 603 

difference in survival and persistence was greatly increased with an increase in temperature from 4°C to 604 

20°C. These studies highlight the stability of AdV compared to other viruses, however, these studies were 605 

conducted in laboratory experiments and the viral stability may differ in field conditions. 606 

PyV has also been shown to be as resistant to sunlight in seawater as AdV (Ahmed et al., 2019b; Liang et al., 607 

2017), however, the monitoring experiments detailed in Section 3.5.2 suggest that PyV degrades in water 608 

more rapidly than AdV. In contrast, crAssphage proved to be as persistent as AdV and PyV in coastal 609 

bathing water (Ahmed et al., 2019b). The temporal decay of AiV, PMMoV and culturable bacteriophages 610 

infecting Bacteroides is not yet known and should be investigated and compared with AdV decay to 611 

determine their usefulness as indicators. The comparison of the mechanisms of decay of PMMoV and the 612 

other viral indicators would be especially interesting due to the differences in the structure of the virions 613 

(tubular vs. icosahedral).  614 

3.6 Criterion 6: Global distribution and temporal stability 615 

All potential indicator viruses reviewed here have been detected in environmental waters, wastewater or 616 

stool samples of individuals in Asia, Europe, Australia, Africa and the Americas, highlighting the global 617 

distribution of these viruses (Cinek et al., 2018; Fratini et al., 2014; Friedman et al., 2009; Guido et al., 2016; 618 

Jofre et al., 2014; Kitajima and Gerba, 2015; Rames et al., 2016; Schaper et al., 2002; Symonds et al., 2018). 619 
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In the reviewed studies, the indicator viruses were detected and quantified in 31 countries (including 10 US 620 

states), with the majority of studies conducted in the US, Brazil, Western Europe, Japan and Australia 621 

(Figure 1; Table 2). While the available data suggest that these viruses are distributed globally, very limited 622 

information on enteric and indicator virus quantities is available from developing countries (e.g. India, 623 

Northern Asia and most African countries) (Table 2). To date, none of these viruses have been studied in 624 

water from Antarctica, where they could point towards contamination of pristine areas by research 625 

scientists, or long-distance dispersal.  626 

During long-term monitoring surveys, in the Katsura River to the west of Kyoto, Japan, FRNAP-II was shown 627 

to have very limited seasonality, with similar levels in the winter and summer months (Hata et al., 2016). 628 

However, in a tributary of the Uji River to the South of Kyoto, FRNAP-II was detected only during winter. 629 

FRNAP-III was also found to be more prevalent during winter at both sites, a trend also observed in effluent 630 

from Johkasou effluent by Setiyawan et al. (2013). Culturable phages infecting Bacteroides showed no 631 

seasonal changes in their concentration in river water in the UK (Ebdon et al., 2007) and in wastewater 632 

collected in seven US states (McMinn et al., 2014) and in Brazil (Prado et al., 2018). 633 

In the studies reviewed, crAssphage, AdV and PyV showed no seasonal changes in concentrations in 634 

untreated and treated wastewater, river and seawater samples (Carducci and Verani, 2013; Farkas et al., 635 

2018a, 2018b; Fumian et al., 2013; Iaconelli et al., 2017; Masclaux et al., 2013; Qiu et al., 2015; Rusiñol et 636 

al., 2015; Schmitz et al., 2016). AiV and PMMoV also showed stable titres in treated and untreated 637 

wastewater over a year (Iaconelli et al., 2016; Kitajima et al., 2014; Myrmel et al., 2015; Schmitz et al., 638 

2016), however, peak concentrations for AiV were noted in wastewater in Japan during winter and spring 639 

(Kitajima et al., 2013). PMMoV showed no seasonality in river water either (Haramoto et al., 2013; Rosario 640 

et al., 2009). Higher AdV concentrations were observed in treated wastewater collected in Wales during 641 

summer than in winter and spring, which was most likely due to dry weather and a transient increase in 642 

population due to tourism in the summer months (Farkas et al., 2018b). Furthermore, higher AdV 643 

concentrations were detected in untreated wastewater in Norway during January-March compared to the 644 

concentrations observed during April-December (Myrmel et al., 2015). The prevalence of AdV was also 645 
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higher during autumn-winter than during the spring-summer in wastewater collected in Egypt (Elmahdy et 646 

al., 2019). Similarly, AdVs were detected at low concentrations during the summer and autumn months in 647 

river water samples collected in Japan and in Germany, respectively (Hamza et al., 2009b; Kishida et al., 648 

2012), probably due to dry weather conditions. Overall, these findings suggest that the indicators are 649 

detectable and quantifiable throughout the year, which enables the continuous evaluation of wastewater 650 

contamination. The current data imply that precipitation has more effect on viral loads than temporal 651 

changes in the number of infections. Nonetheless, this should be further investigated by comparing 652 

epidemiological data, viral loads in wastewater and precipitation over several years.  653 

In terms of fine-scale temporal variability, the effect of rainfall on virus concentrations in surface water is 654 

variable. On one hand, a decrease in virus concentrations in surface water has been reported due to 655 

dilution of the water body (Grøndahl-Rosado et al., 2014b). In contrast, a number of studies have shown 656 

association between precipitation and elevated enteric viral concentrations in water (Ebdon et al., 2007; 657 

Wicki et al., 2015). In regions with combined sewers, much of this increase in contamination is likely due to 658 

the additional wastewater input via CSOs and storm water drainage.  659 

CSOs discharge largely untreated (screened, partially settled or untreated) wastewater into the 660 

environment. This almost certainly results in higher numbers of enteric viruses being discharged into 661 

receiving waters than would otherwise be the case from fully treated sewage effluents (Fong et al., 2010; 662 

Hata et al., 2014). Furthermore, relatively few CSOs have spill duration monitoring and almost none have 663 

microbiological or chemical monitoring requirements. Therefore, in most cases the input of contamination 664 

can only be monitored via the surveillance of wastewater-derived contaminants in water bodies. 665 

4444....    Conclusions and future researchConclusions and future researchConclusions and future researchConclusions and future research    666 

The viruses reviewed here have all been shown to have potential to indicate wastewater-derived pollution 667 

in the aquatic environment (Table 3). Due to their wide distribution, they may be implemented in water 668 

quality risk assessments worldwide. The major advantage of enteric viral indicators (AdV, PyV, AiV) is that 669 

they are human specific, hence their use as indicators enables us to track human-derived contamination 670 
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exclusively. In addition, crAssphages and other phages, which infect commensal bacteria associated with 671 

human gut, and PMMoV, which is a plant virus accumulating in the human gut due to the consumption of 672 

infected plant-derived food, are also associated primarily with domestic wastewater contamination. A 673 

major advantage of phages and PMMoV is that they are not infectious to humans and hence their detection 674 

and culturing in the laboratory pose no risk of infection to the operators. FRNAP-II and FRNAP-III have also 675 

been shown to be useful in determining human sources of viral contamination due to their prevalence in 676 

human waste. However, due to the non-specific nature of their natural E. coli hosts, it is not certain what 677 

the reason is for the specific prevalence in human waste relative to FRNAP-I and FRNAP-IV. As such, it is 678 

unclear how well these can be applied globally and indeed how stable that relationship is.   679 

The viruses reviewed here can be easily detected by qPCR-based methods, however, no such assay has 680 

been developed yet for culturable phages infecting Bacteroides spp.  When using molecular methods, DNA 681 

viruses (AdV, PyV and crAssphage) may be easier and more affordable to monitor than RNA viruses (AiV, 682 

PMMoV, FRNAP). The infectivity of FRNAP can be easily studied using a simple and rapid plaque assay. 683 

Furthermore, the infectivity state of AdV can also be monitored using ICC-qPCR. Infectivity assays are also 684 

available for PyV, AiV and crAssphage, however, the usefulness of those assays in environmental setting 685 

have not been critically evaluated. Furthermore, there are emerging technologies, such as isothermal 686 

amplification, biosensors and microfluidics approaches, which may be useful for the routine monitoring of 687 

viruses in the environment (Farkas et al., 2020). In some cases, these may offer the potential for near real-688 

time reporting of viral concentrations in water, however, their applicability still needs to be critically 689 

evaluated from a scientific, practical and economic perspective. This is particularly the case for in situ 690 

devices where biofouling, cross-reactivity and sensor drift represent major problems when translating 691 

technologies developed in the laboratory to the field (Lin and Li, 2020).  692 

Here, the review of global studies suggests that AdVs, AiV, FRNAP-II, FRNAP-III, crAssphage and PMMoV are 693 

detected more frequently and at high concentrations in wastewater and within polluted water bodies than 694 

the other indicators reviewed. PyVs are also present in wastewater at high concentrations, however, they 695 

are less prevalent in the environment than AdV (Albinana-Gimenez et al., 2009; Bortagaray et al., 2019; 696 



29 
 

Dias et al., 2018; Haramoto et al., 2010; Moresco et al., 2012), suggesting rapid degradation. Similarly, 697 

while FRNAP-II and FRNAP-III are initially found at high concentrations in wastewater, it is likely that they 698 

degrade more rapidly in the environment than AdV. The concentration of BacGB124P, BacGA17P and 699 

BacARABA84P was also high in wastewater and have been found in wastewater polluted environments, 700 

however, only a limited number of studies have been conducted to date on viral decay prompting the need 701 

for more research in this area.  702 

Based on their ease of detection, high concentrations in wastewater and environmental persistence, our 703 

review suggests that AdVs are the most useful viral indicators of wastewater contamination. However, AiV, 704 

crAssphage and PMMoV also show potential. More research is essential to evaluate the usefulness of these 705 

viruses and indicators. Future research should therefore focus on:  706 

(i) Careful monitoring of the association of crAssphage and PMMoV with non-human 707 

contamination. 708 

(ii) Monitoring the concentration and persistence of AiV, crAssphage and PMMoV in the aquatic 709 

environment, especially in groundwater and in seawater. The effect of extreme weather events 710 

on viral concentrations should also be investigated. 711 

(iii) Development of a simple and rapid standard operating procedure for concentrating and 712 

detecting viruses from water to facilitate the accurate detection of selected indicator virus(es). 713 

(iv) The development of multiplex qPCR assays to simultaneously detect a panel of the best 714 

markers, potentially tailored to differences in geographical diversity (particularly for PMMoV).  715 

(v) Critical evaluation and application of new and emerging rapid approaches for viral surveillance. 716 

(vi) Survival and maintenance of infectivity monitoring of AiV, crAssphage and PMMoV in 717 

wastewater and in the water environment. For that, the usefulness of infectivity assays for 718 

these viruses should be developed and evaluated.  719 

(vii) Undertake comprehensive field campaigns in areas where data is not available (e.g. Africa, Asia, 720 

Oceania) to validate the use of viral indicators as an effective way to monitor wastewater 721 

pollution. 722 
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(viii) Use these viral indicators to validate current mathematical models which predict viral dispersal 723 

and which are used for risk assessment purposes. 724 

(ix) Better establish the relationship between viral indicators and wastewater pollution to enable 725 

the development of legislative standards for viral contamination of waterbodies.  726 

A greater understanding of the fate and behaviour of these viruses will allow them to be routinely 727 

implemented for water quality monitoring and for viral risk assessment. With a standardised protocol for 728 

the detection and quantification of proposed indicators, viral contamination can be efficiently addressed by 729 

regulators and hence the number of waterborne and foodborne viral diseases can be reduced, ultimately 730 

enhancing global human health. 731 
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Table 1. Human pathogenic viruses detected in the aquatic environment 

Family Genus 
Virus types found in 

water 

Structure 
Symptoms Zoonotic Reference 

Capsid Genome Size 

Adenoviridae Mastadenovirus Mastadenovirus A-F Icosahedral dsDNA 
70-90 

nm 

Gastroenteritis*, respiratory 

illness, ear infection, 

conjunctivitis 

No King et al., 2009 

Anelloviridae Alphatorquevirus Torque teno virus Icosahedral ssDNA 30 nm Unknown, hepatitis* Yes King et al., 2009 

Astroviridae Mamastrovirus Astrovirus Icosahedral ssRNA+ 
28-30 

nm 
Gastroenteritis Potentially 

De Benedictis et 

al., 2011; King et 

al., 2009 

Caliciviridae 
Norovirus Norovirus GI, GII 

Icosahedral ssRNA+ 
35-40 

nm 

Gastroenteritis No King et al., 2009 

Sapovirus Sapovirus GI, GII Gastroenteritis No King et al., 2009 

Circoviridae Circovirus 
Human-associated 

circovirus 
Icosahedral ssDNA 

15-25 

nm 
Unknown* No 

Breitbart et al., 

2017 

Hepeviridae Orthohepevirus 
Hepatitis E virus 

type 1-4  
Icosahedral ssRNA+ 

27-34 

nm 
Acute hepatitis* Yes Purdy et al., 2017 

Papillomaviridae various 
assorted 

papillomaviruses 
Icosahedral dsDNA 55 nm Genital tract infection, cancer* No 

Van Doorslaer et 

al., 2018 

Parvoviridae Bocavirus 
Human bocavirus 

type 1-4 
Icosahedral ssDNA 22 nm 

Gastroenteritis and respiratory 

disease 
No King et al., 2009 

Picornaviridae 

Kobuvirus Aichivirus A-B 

Icosahedral ssRNA+ 
30-32 

nm 

Gastroenteritis* No 

Zell et al., 2017 

Cosavirus Cosavirus A Gastroenteritis* No 

Enterovirus 

Coxsackievirus B 

Enterovirus A-D 

Poliovirus type 1-3 

Gastroenteritis, mild meningitis, 

encephalitis, myelitis, 

myocarditis, conjunctivitis* 

No 

Hepatovirus Hepatitis A virus Gastroenteritis, hepatitis No 

Polyomaviridae 

Alpha-

polyomavirus 
MC polyomavirus Icosahedral dsDNA 

40-45 

nm 
Cancer* No 

Moens et al., 

2017 

Beta-

polyomavirus 

BK polyomavirus 

JC polyomavirus 
Icosahedral dsDNA 

40-45 

nm 

Respiratory, urinary tract and 

skin infection, cancer* 
No 

Moens et al., 

2017 

Reoviridae Reovirus Rotavirus A Icosahedral dsRNA 
60-80 

nm 
Gastroenteritis Potentially 

Cook et al., 2004; 

King et al., 2009 

*May be asymptomatic in otherwise healthy individuals 



Table 2. Number of reviewed studies for each indicator at each region. 

 
North 

America 

South 

America 
Africa Europe Asia Oceania Global detection rate 

A
d

V
 

Raw wastewater 7 2 2 13 3 5 94% (772/823) 

Treated wastewater 10 7 2 13 3 3 86% (1223/1436) 

Surface freshwater 4 5 4 7 4 0 65% (835/1283) 

Groundwater 1 2 0 1 1 0 65% (40/62) 

Seawater 2 6 0 4 0 0 60% (229/381) 

Total 13 16 5 20 5 4 76% (3099/3985) 

P
y
V

 

Raw wastewater 5 5 1 7 2 3 93% (542/581) 

Treated wastewater 6 5 1 6 2 2 68% (608/892) 

Surface freshwater 1 2 0 6 2 0 52% (326/631) 

Groundwater 0 0 0 1 0 0 48% (10/21) 

Seawater 4 0 0 2 2 1 24% (83/350) 

Total 9 7 1 10 4 3 63% (1569/2475) 

A
iV

 

Raw wastewater 5 0 0 0 4 0 91% (92/101) 

Treated wastewater 5 0 0 1 3 0 74% (184/250) 

Surface freshwater 2 0 0 1 3 0 33% (77/236) 

Groundwater 1 0 0 0 0 0 55% (26/47) 

Seawater 0 0 0 0 0 0 NA 

 Total 6 0 0 1 6 0 60% (379/634) 

P
M

M
o

V
 

Raw wastewater 6 0 1 1 2 1 100% (110/110) 

Treated wastewater 6 0 1 1 2 0 99% (135/137) 

Surface freshwater 2 0 0 1 4 0 87% (278/319) 

Groundwater 1 0 0 0 0 0 72% (18/25) 

Seawater 1 0 0 0 0 1 55% (45/82) 

Total 7 0 1 1 5 1 87% (586/673) 

B
a
c
te
r
o
id
e
s
 p

h
a

g
e

s 

Raw wastewater 2 2 0 14 2 0 97% (531/549) 

Treated wastewater 0 1 0 8 1 0 75% (911/1216) 

Surface freshwater 2 1 0 4 1 0 66% (280/427) 

Groundwater 0 0 0 3 0 0 38% (48/127) 

Seawater 0 0 0 3 0 0 42% (43/102) 

Total 3 2 0 19 2 0 72% (1741/2421) 

F
R

N
A

P
 (

II
/I

II
) 

Raw wastewater 0 0 0 1 3 0 73% (96/132) 

Treated wastewater 0 0 0 1 4 0 81% (219/270) 

Surface freshwater 0 0 0 2 5 0 59% (375/634) 

Groundwater 0 0 0 0 1 0 0% (0/10) 

Seawater 0 0 0 0 0 0 NA 

Total 0 0 0 3 8 0 66% (690/1046) 

 

 



1 

 

 

 

 

Table 3. Summary on how the reviewed viruses meet the criteria for wastewater indicator. 

 

Criterion AdV PyV AiV PMMoV 
FRNAP 

(II/III) 

Culturable 

Bacteroides 

phages 

CrAssphage 

Methods used 

for detection 

in 

environmental 

samples 

qPCR; 

ICC-qPCR; 

culturing 

qPCR qRT-PCR 

qRT-PCR; 

plant 

infectivity 

assay 

qRT-PCR; 

culturing 
culturing qPCR 

Human 

association 

Human-

specific 

Human-

specific 

Human-

specific 

Human 

waste and 

agricultural 

sites 

Primarily 

human 

gut-

associated 

Primarily 

human gut-

associated, 

have been 

found in 

animal 

faeces at 

low titres 

Primarily 

human gut-

associated, 

have been 

found in 

animal 

faeces at 

low titres 

Concentration 

in wastewater 

(gc/l) 

1x10
1
 – 

3x10
11

 

1x10
3
 – 

6x10
8
 

1x10
4
 – 

4x10
6
 

3x10
5
 – 

2x10
10

 

4x10
3
-

2x10
9
 

1x10
1 

– 

6x10
6
 

2x10
5
 – 

1x10
12

 

Log10 removal 

during 

wastewater 

treatment 

0.2 – 5.5 

(n=500) 

0.3 – 4.2 

(n=407) 

0.8 – 2.7 

(n=72) 

0 – 2.7 

(n=106) 

0.1 – 3.1 

(n=172) 

0.5 – 5.6  

(n=304) 

1 – 1.2  

(n=39) 

Concentration 

in the aquatic 

environment 

(gc/l) 

4 – 2x10
10

 1 – 1x10
7
 

7x10
1
 – 

8x10
8
 

1x10
1
 – 

8x10
8
 

0.2-2x10
6
 1 – 2x10

5
 

1x10
3
 – 

3x10
7
 

Global 

distribution 

and temporal 

stability 

Detected 

in clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected 

in clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected 

in clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected in 

clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected 

in clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected in 

clinical 

samples 

globally; 

limited 

seasonal 

variations 

Detected in 

clinical 

samples 

globally; 

limited 

seasonal 

variations 

 

 

 









HighlightsHighlightsHighlightsHighlights    

- Human mastadenoviruses are robust indicators for human-associated pollution in water 

- Bacteroides-associated phages and crAssphage are promising indicators 

- Multiple indicators should be used to assess wastewater treatment efficiency 

- Survival and abundance of indicator viruses should be further assessed  
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